当前位置: 首页 > 首頁 > 12bet

12bet

时间:2020-04-01 22:58:39作者:Mckay

导语:12bet太阳能电池技术或迎来彻底变革 效率将大幅提高
12bet太阳能电池技术或迎来彻底变革 效率将大幅提高太阳能电池技术或迎来彻底变革 效率将大幅提高太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高,见下图

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

。12bet

太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高

北极星太阳能光伏网讯:研究人员首次证实,利用单线态裂分可以产生两个长寿命激子。这对提高太阳能电池效率非常关键。

(来源:微信公众号“科技工作者” ID:gh_1da3ca950fa7)

磁场数据显示了由单线态裂分产生的激子的形成与衰变。

据phys.org网站8月19日报道,美国哥伦比亚大学的研究人员在《自然·化学》杂志发布了一种新方法,可利用单线态裂分产生更多能量,进而提高太阳能电池的效率。在论文中,研究团队详细介绍了相关有机分子的设计。这种有机分子能够通过单线态裂分过程使一个光子产生两个激子,而且激子产生的速度很快,寿命也比无机激子长得多。这使得太阳能电池每吸收一个光子后产生的电流放大化。

化学副教授Luis Campos说:“我们为单线态裂分材料找到了一种新的设计规则,它让我们开发出了迄今为止最有效和最具技术可行性的分子内单线态裂分材料。这有望为制造更高效的太阳能电池奠定基础。”Campos解释说,太阳能电池板的运行过程都是一样的:一个光子产生一个激子,激子转化为电流。然而,某些分子可通过单线态裂分使单个光子产生两个激子,这类分子面临的最大挑战是,两个激子的“存活时间”非常短(几十纳秒),科学家们很难将它们以电的形式收集起来。

激子生成示意图。

Campos和其同事设计的有机分子可以快速产生两个长寿命激子。这一巨大进展不仅可以用于下一代太阳能技术,还对光催化化学反应、传感器及成像技术有促进作用。

Campos解释说,激子可以用于激活化学反应,以生产药品、塑料等产品。

激子应用广泛。

Campos说:“此前,激子的产生要么很慢,要么寿命很短。我们首次证实了单线态裂分可以快速产生双激子,并且寿命较长。这不仅为根本上研究单分子中的激子行为打开了大门,也为理解如何在涉及光放大信号的设备中利用它们打开了新视野。”

原标题:太阳能电池技术或迎来彻底变革 效率将大幅提高

太阳能电池技术或迎来彻底变革 效率将大幅提高太阳能电池技术或迎来彻底变革 效率将大幅提高。12bet

标签:

分享到:

上一篇:歡迎

下一篇:歡迎您

12bet版权与免责声明:凡本网注明[来源:12bet]的所有文字、图片、音视和视频文件,版权均为12bet(nvanmobang.com/2mvlt/4650434913.html)独家所有。如需转载请与3171672752联系。任何媒体、网站或个人转载使用时须注明来源“12bet”,违反者本网将追究其法律责任。

本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。

联系我们

广告联系:3171672752
展会合作:3171672752
杂志投稿:3171672752

网站简介|会员服务|联系方式|帮助信息|版权信息|网站地图|友情链接|法律支持|意见反馈

版权所有 2019-2020 12bet(nvanmobang.com/2mvlt/4650434913.html)

  • 经营许可证
    粤B2-20150019

  • 粤ICP备
    14004826号

  • 不良信息
    举报中心

  • 网络110
    报警服务

网站客服热线

3171672752

网站问题客服

3171672752